Coaxial Analog 1550(PD) WDM CATV Module with Pigtail

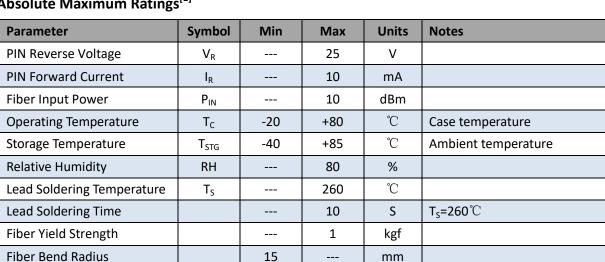
Description

LM89xx series are high responsibility and high linearity 3pin PIN photodiode component.

The products features: Low capacitance, low dark current and high Optical return loss.

There is a 1550nm PIN-PD and two connectors for this module, they are connected by a 1550 WDM, it can be separate the optical wave of 1550nm,1310nm and 1490nm.

It is widely used in CATV system. The receiver diode is mounted into a coaxial package with single mode fiber pigtail. FC/UPC, FC/APC, SC/UPC or SC/APC connector can be selected.


Features

- 1550 nm receiver with PIN-PD
- 1310 nm and 1490nm transmit
- Low noise, low distortion, high linearity
- Coaxial Pigtail Package with WDM
- operating temperature range: -20°C to 80°C

Application

- Receiver For CATV/CDMA
- PON and WDM system
- FTTX Networks
- Other analog receiver system

Absolute Maximum Ratings^[1]

Note 1: Beyond the scope of absolute maximum ratings can cause permanent damage to the device. If it has been a long time to use the device in the absolute maximum ratings may affect device reliability.

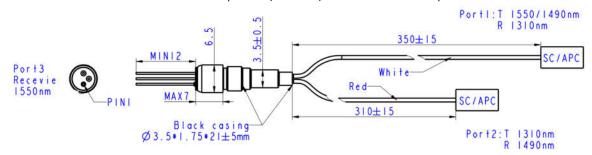
LM8900-IEG-3 WDM Module

Electric and Optical Characteristics

(All measurements are at Case temperature of 25 $^{\circ}$ C ±3 $^{\circ}$ C,V_R=12V@1550nm unless stated otherwise.)

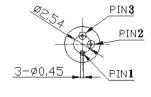
Parameter	Symbol	Min	Typical	Max	Units	Notes	
Port: 1550nm							
Operating Wavelength	λ	1550	1555	1560	nm		
Supply Voltage	Vs		-12	-5	V	Supply Voltage	
Responsivity	R	0.85	0.9		A/W	V _R =12v , λ=1550nm	
Active Area	Φ		75		μm		
Return Loss	RL			-40	dB		
Modulation Bandwidth	BW	3.0			GHz	-3dB, VR=12V, Pin=0dBm	
Capacitance	С		0.4	0.7	pF	VR=5v,f=1MHz	
Dark Current	Id			1.0	nA	VR=5v	
Composite Second Order beat	CSO			-70	dBc	[2]	
Composite Third Order beat	СТВ			-80	dBc	[2]	
Optical path characteristic- WDM							
Operating Wavelength	λ	1260	1310	1360	nm	Port2 -> Port1	
		1480	1490	1500		Port1 -> Port2	
		1570	1577	1620		Port1 -> Port2	
		1550	1555	1560		Port1 -> Port3	
Insert Loss	IL		0.5	0.7	dB	λ=1270&1310nm, Port2 —> Port1	
			0.5	0.7		λ=1490&1577nm, Port1 —> Port2	
Isolation	ISO2	15			dB	λ =1550nm, Port1 \longrightarrow Port2	
		35				λ=1260~1500nm&1575~1650nm,	
						Port1 —> Port3	
Pigtail Length	L				mm	Outline Dimensions [X]	
Connector		SC/APC				Port1	
		SC/APC				Port2	

Notes 2: Two-tone test condition : f1=50MHz, f2=505MHz, f1 \pm f2, VR=-12V, Pavg=0dBm, OMI=0.25, Rload=75 Ω .


Pigtail Parameters

Parameter	Value	
Optical connector	FC/UPC,FC/APC, SC/UPC or SC/APC (IEC874/7)	
Mode field diameter	9.5±1um	
Cladding diameter	125±2um	
Outermost Jacket	900±100um	
Jacket color	Red and White	

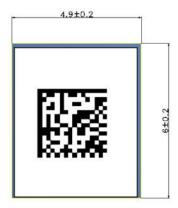
Version:1.0


Outline Dimensions

All dimensions are ±0.1mm unless otherwise specified (Unit: mm). For detail information please contact LinkPhotonic.

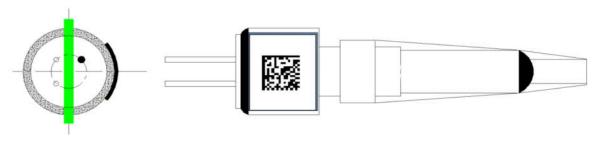
Package 1 without bracket

PD Pin Assignment



Pin

1 CASE
2 PD Cathode
3 PD Anode

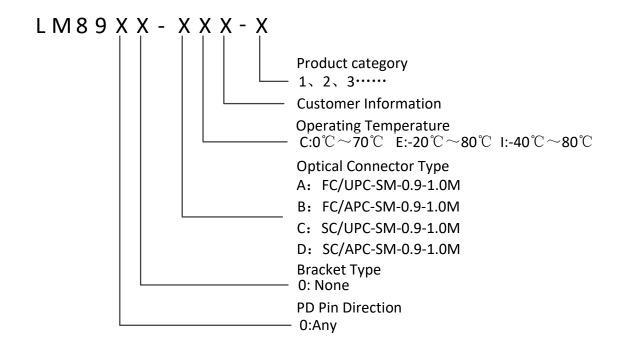

Bottom View

Label Dimensions

Requirements: tag qr code is based on Data Matrix code.

Label paste schematic

Requirements: the label is in the center of the position shown above, which fits perfectly with the holder and can be identified by scanning code.


Version:1.0

Precautions

Semiconductor chips are sensitive to electro-static damage. The module shall be packed with antistatic material for transportation. The working station and operators shall be grounded. Switching transients can cause electrical overstress (EOS) damage to the chips. EOS be may resulted from improper ESD handling, improper power sequencing, a faulty power supply or an intermittent connection.

- a. Operators should always use antistatic bands and clothing, electric conductive shoes, and other safety appliances while at work are highly recommended.
- b. Humidity in working environment should be controlled equal or above 40 percent RH.
- c. It is recommended that grounding mats be placed on the surfaces of assembly line workbench and the surrounding floor in working area, etc.
- d. When mounting this product in other parts or materials which can be electrically charged (printed wiring boards, plastic products, etc.), pay close attention to the static electricity in those parts.ESD may damage the product.

Ordering Information

Statement

The information provided herein is believed to be reliable, LinkPhotonic assumes no liability for inaccuracies or omissions. LinkPhotonic assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. LinkPhotonic does not authorize or warranty any LinkPhotonic product for use in life-support devices and/or systems. Copyright © 2014 LinkPhotonic Inc. All rights reserved.

Wuhan LinkPhotonic Technology Inc.

Tel: +86-27-87780366

www.linkphotonic.com

sales@linkphotonic.com